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Chromatic Polynomial

For a simple graph G and an integer k, denote by P(G, k) the number of k-colorings of the graph G. We call
this function the chromatic polynomial of G.

1: For a tree T, show that P(T, k) is really a polynomial.

Solution: It is easy to see verify that for any tree T" on n vertices, it is really a
polynomial:

P(T,k)=k-(k—1)""
It can be seen by a greedy coloring.

2: Let G be a graph. What is the smallest k£ such that P(G, k) > 07

Solution: Observe that x(G) is the smallest integer k, for which P(G, k) > 0. From
definition, it needs to be 0 for smaller k.

The following recursion implies that G is really a polynomial. By G/e we denote the graph obtained by
contracting e, i.e. identify the endpoints of e in G — e.

Proposition 1. Let G be a graph and let e = xy be an edge of G. Then,

P(G,k) = P(G — e, k) — P(GJe, k). (1)

3: Prove the proposition.

Solution:

Proof. The number of k-colorings of G — e, where z and y are colored differently is
P(G, k). The number of k-colorings of G — e, where x and y are colored the same
equals P(G/e, k). From here we get the relation. O

4: Find P(C5, ) using the above recursion.

Solution: For demonstration let us evaluate the chromatic polynomial of C5. Notice
that P(Cs,z) = P(Ps,x)—P(Cy, ). As Psis a tree, we have P(P5, 2) = 2° — 4%+ 62° —
4% + x and with a previous application of the recursion, one can evaluate P(Cy,x) =
ot — 423 + 622 — 3x. And these two give us P(Cs, z) = 2° — 5z + 102° — 1022 + 4.

A color k-partition of G is a partition of V(G) on k nonempty disjoint sets
‘/lav%""vk’

such that V; is an independent set in G. Note that a color k-partition of G give us immediately a k-coloring
of G with all V; being its color classes. Denote by ar(G) the number of color k-partitions of G. Recall that
km =k(k—-1)---(E—i+1).

Proposition 2. Let G be a graph on n vertices. Then,
P(G,k) = ai(G)ky . (2)
i=1

@®®® by Riste Skrekovski and Bernard Lidicky


https://creativecommons.org/licenses/by-nc-sa/4.0/

Fall 2021 Math 567:19 2

5: Prove the proposition.

Solution:

Proof. It the graph G is properly colored with precisely ¢ colors, then color classes
comprise a color i-partition, and their number is a;(G). As there are k available colors,
we can assign colors to the color classes of an i-partition on kj; ways, which is a;(G)ky
all together. For the end observe that every proper coloring can be obtained in this
way. [

Proposition 3. Let G be disjoin union of graphs G1 and Go. Then,
P(G7k) = P(Glak) : P(G27k) :

6: Prove the above proposition.

Solution: This should be obvious as any k-coloring of G; and G, give a k-coloring

of G1 U GQ.

Let G be a union of G; and G2 whose intersection is a clique, i.e.
G=G1UGy and G1NGy=K,.

We say G is an r-clique-sum of G and Gb.

Proposition 4. Let G be a r-clique-sum of graphs grafov Gy in Ga. Then,

P(G1,k) - P(Ga, k)
P(K,, k)

P(G, k) =

7: Prove the above proposition.

Solution:

Proof. Observe that every k-coloring the complete graph G; N G5 can be extended to
P(G;, k)
kir)
coloring of GG; za ¢ = 1, 2. Similarly, it can be extended to

P(G,k)

ki

coloring of G;. So,

P(G.K) _ P(Gik) P(Ga.k)

i ko k)
and since P(K,, k) = ki), we promptly obatin the desired result. ]
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